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The coupled Dirac-Einstein equations with a negative cosmological constant for 
an open FRW universe are studied in detail. The corresponding solutions admit 
bounces (-'--, minimal radius) of the universe such that the matter energy in any 
comoving 3-volume is either increased or decreased during the bounce according 
to whether the bounce pressure of the spinor field is appropriately negative or 
not. If matter is generated (annihilated) during a bounce, the universe subsequently 
becomes larger (smaller) than before the bounce. Therefore matter can be 
generated only during the growth of the universe, but it is annihilated again 
during the subsequent shrinking phase, which together with the growing phase 
forms a cosmic supercycle. 

1. I N T R O D U C T I O N  

Concerning the cosmic evolution of our universe, much attention is 
currently being given toinflationary scenarios because many (if not all) of  the 
notorious difficulties with the standard cosmological model can be overcome 
within the f ramework of  that new paradigm [for reviews see Blau and Guth 
(1987) and Linde (1987); also see Abbott and Pi (1986), Dolgov et  al. (1990), 
and Kolb and Turner (1990)]. However, there is also some doubt whether 
inflation really is a satisfactory solution of  the old cosmological puzzles, the 
objections being partly of  technical (Hawking, 1990; Penrose, 1990) and 
partly of  a more philosophical nature (Penrose, 1989) or they are simply a 
matter of  taste (Dicke, 1990). As to the technical side, it is no problem to 
conceive several alternative foundations of  the inflation mechanism (Mattes 
and Sorg, 1991, 1992), provided one is convinced that inflation per se is the 
true explanation for the past evolution of  the universe. However,  if  one does 
not like the very idea of  inflation, one will perhaps prefer the model o f  an 
oscillating universe (Dicke, 1990), where the universe starts with a small 
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size and with few particles (perhaps a single one) but becomes larger and 
equipped with ever more energy and particles through any one of the consecu- 
tive cosmic cycles. Now it may seem as if the latter point of view would 
require a rather exotic physics for generating the desired oscillations, whereas 
inflation is based upon a seemingly plausible idea, namely the emergence of 
some weakly interacting scalar field within the framework of the Grand 
Unified Theories (Turner, 1986). 

However, we want to demonstrate in the present paper that just the 
opposite is true: for an oscillating universe model (of the kind mentioned 
above) there are needed only two ingredients: (i) Einstein's equations with 
a negative cosmological constant and (ii) Dirac's equation. Evidently, these 
two building blocks form a less speculative basis than is required for the 
inflationary paradigm, because the existence of the Dirac spinor field in 
nature is beyond any doubt, in contrast to that scalar field of questionable 
origin (Turner, 1986). 

In contrast to the scalar fields, the physical relevance of Dirac's spinor 
field has been well established in many areas of physics (e.g., atomic spectra, 
scattering phenomena, etc.), and this success may be referred to both the 
classical and the quantized versions of the spinor field. Moreover, it is 
generally presumed that the most elementary constituents of matter (quarks 
and leptons) are also Dirac particles. In view of this overwhelming signifi- 
cance of spinor fields, it seems reasonable to assume that these fields will 
play also a dominant role for the description of the matter in the very early 
universe when it was not yet filled with a hot gas of decoherent particles. 
(Such a thermodynamic state of matter would produce a positive value for 
pressure ~ and energy density ~ and therefore would lead to the inconsistenc- 
ies of the standard cosmological model mentioned above.) During the prether- 
modynamic phase, the universe is imagined to be filled by a globally coherent 
quantum state of a Dirac spinor field which can produce also a negative 
pressure acting as the origin of both the universe's outward push and the 
generation of matter-energy. Thus we are led to the idea that matter-energy 
was created by the negative pressure during the prethermodynamic phase in 
the form of a globally coherent spinor field obeying Dirac's classical field 
equation. Such a classical field configuration (extending globally over the 
tiny but rapidly expanding universe) cannot be identified with some ordinary 
quantum state which is occupied by a definite particle number such as, 
e.g., the electron's ground state in the hydrogen atom ('---~ Pauli's exclusion 
principle). The reason is that those ordinary quantum states subject to the 
exclusion principle must be identifiable uniquely by fixed quantum numbers 
(charge, energy, angular momentum, etc.). However, the violent expansion 
dynamics of the primeval space-time does not admit the spatial normalization 
of certain conserved quantities carded by that spinor field and therefore the 
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notion of particle number cannot be applied in its conventional meaning. 
Alternatively, we will introduce the concept of"particle number Ix" by simply 
measuring the matter-energy of the classical spinor field in units of the rest 
energy Mc 2 of a conventional Dirac particle. This number Ix is then considered 
as a rough estimate of the number of decoherent ordinary fermions which 
are released through the transition of the global quantum state into the hot 
thermodynamic phase (as the starting point of the standard cosmology). 
However, the precise nature of that phase transition is a controversial point 
in the literature and we want to restrict ourselves to the question of whether 
the coupled Dirac-Einstein dynamics of the expanding universe is capable 
of producing large enough values for the "particle number Ix" during the 
prethermodynamic phase (the number of present-day fermions is usually 
thought to be of magnitude ~>108~ 

In some previous papers, the cosmological implications of the coupled 
Dirac-Einstein equations (without a cosmological constant) have already 
been studied (Sorg, 1992a, b, 1994; Ochs and Sorg, 1993, 1994; Mattes and 
Sorg, 1993) and it has been found that the closed (FRW) universe must be 
excluded. The flat case yields the ordinary, matter-dominated universe of 
the old standard model, which is plagued with its well-known deficiencies. 
Therefore, it is exclusively the open case which is nontrivial and exhibits 
some interesting properties (Ochs and Sorg, 1993): (i) there is a soft birth 
of the universe (vanishing matter content ~ "creation ex nihilo"), (ii) matter 
is generated during a short inflation-like phase, where the "radius" of the 
universe is not yet appreciably greater than the Compton wavelength of the 
Dirac particle, and (iii) there are also bounce solutions, where the radius of 
the universe drops below the Compton wavelength ( ~  quantum effects) and 
the universe's energy content changes suddenly. 

However, despite these welcome features of the original Dirac-Einstein 
equations, there is also one deficiency which motivates us to look for a 
further improvement: this is the fact that the production of matter during the 
short inflation-like phase is too weak to account for the huge matter content 
of the universe observed today. For instance, if the young universe initially 
contains one single particle per comoving 3-cell (of Compton length), then 
the final number of particles in this cell never is greater than three (Section 
2). Because of this unrealistic prediction one has to look for a matter-producing 
modification of the Dirac-Einstein model, which, however, can be achieved 
in a very simple way (Section 3): one merely has to include a cosmological 
term (with a negative cosmological constant). The reason is that for bounded 
particle number per comoving 3-cell such a term forbids the infinite growth 
of the universe's radius ~ even in the open case, so that the extension of 
the universe becomes bounded from above. On the other hand, when the 
universe has passed its maximal extension and the radius ~t has become very 
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small again, the negative pressure of the Dirac spinor field blows up the 
universe and thus prevents it from collapsing (Section 4). The result of these 
two effects is the emergence of oscillations of a special kind, where the 
matter content is changing suddenly during that short time period when the 
radius is of the order of magnitude of the Compton wavelength. Fortunately, 
the matter content increases when the maximal extension of the universe is 
growing during the consecutive cosmic cycles (and vice versa). 

We elaborate and discuss these effects by means of some detailed numeri- 
cal computations. 

2. EQUATIONS OF MOTION 

As mentioned above, the present model is based upon the minimal 
coupling of Dirac's equation 

ihc'yW~b = g c ~  (1) 

to gravity; i.e., we complement this field equation for the wave function 
by Einstein's equation with a cosmological term: 

E~  = 8"n" ~c (T~v + h0G~) (2) 

1 
(Einsteintensor E ~ =  R ~ - ~ R G ~ v )  

This cosmological complement has been included in such a way that it 
may be considered as an extra energy-momentum density which is normally 
attributed to the physical vacuum. (Weinberg, 1989). 

The matter energy-momentum density T~ is assumed to be exclusively 
due to the spinor field ~ and must exhibit the cosmological shape 

Tr = At[t~]b~b~ - ~ [ ~ ] ~  (3) 

where the unit vector b~ points in the direction of cosmic time 0 

b~, = 0~0 (4) 

(b~b ~ = +1) 

and the projector ~ , ,  acts orthogonal to this time direction 

b ~ r  = 0 (5a) 

~ ,  = ~ (5b) 

Clearly, it is not at all obvious that the energy-momentum density Tr of the 
Dirac field t~ obeys the cosmological shape (3), because it carries a nonvan- 
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ishing spin density which, in general, will break the exact Robertson-Walker 
symmetry. However, the Dirac equation on a Robertson-Walker background 
admits a certain subclass of solutions producing an energy-momentum density 
T~,~ of the exact cosmological form (3) (Sorg, 1992a, Ochs and Sorg, 1994). 
We restrict ourselves to this subclass of solutions throughout this paper, where 
T~ does not explicitly contain the spin effects. 

If the cosmological term is also put into the physical form (3), one finds 
a somewhat exotic equation of state for the vacuum, namely 

@o = -J/to = - k o  (=  const) (6) 

Similarly, the special configurations of Dirac's spinor field ~ mentioned 
above produce energy density ~ and pressure ~ of the following kind 
(Sorg, 1992a): 

3) = 3hcp cos(x) + (Ta) 

o" 
@ = hcp - ~  cos(x) (7b) 

(open universe: tr = + 1) 

Here, ~ is the "radius" of the FRW universe, for which we consider only 
the open case (or = + 1). Further, m = Mc/h denotes the inverse Compton 
wavelength of the Dirac particle, whose wave function qJ has been parame- 
trized by the scalar density p = ~lJ and by the relative phase angle X of the 
positive- and negative-energy components (Mattes and Sorg, 1993). Fortu- 
nately, the energy-momentum density T~, (3), does not contain the remaining 
six physical parameters (besides p and X) building up the eight-component 
wave function ~. 

Of course, Dirac's equation (1) for the wave function ~ must yield now 
the equations of motion for its parametrizations X and p (=: ~ 3 ) ,  i.e., 

x (8a) 

~ = 3  ff r ~sin(x)  (8b) 

where cosmic time 0 and the radius ~t have been rescaled by the Compton 
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length (i.e., 0 ~ t = m0; ~t ~ r = m~t). The last dynamical equation is 
that for the radius r and is found from the Einstein equation (2) as 

Y = ---~-- ~ 1 + 3~r + ~ A2ko r (9a) 

= -- COS(X) + + A2ko r2 (9b) 
r 

We have preferred to work here with the dimensionless constant A 
(=mLp) and with ko [=hom-4(hc) -l] in place of the cosmological constant 
ko. For vanishing cosmological term (ko ---) 0), the generalized system (9a), 
(9b) is reduced to the previous case of Ochs and Sorg (1993). 

The systems of equations (8) and (9) are the coupled Dirac-Einstein 
equations for an FRW universe filled with Dirac's spinor field, and we are 
going to study the corresponding solutions in some detail. But before getting 
involved with the numerical computations, it is always useful to look for a 
qualitative picture of what is to be expected. To this end, first remember 
(Ochs and Sorg, 1993) that for it0 = 0, i.e., for vanishing cosmological term, 
the radius r is growing infinitely, i.e., asymptotically as r(t) ---- t for t --~ oo, 
as can be read off directly from the so-called "initial-value equation" (9b). 
However, it is just this equation which forbids such an asymptotic behavior 
for negative cosmological constant (k0 < 0), provided there is negligible 
production of matter ( ~  IX ~- const). Assuming that the maximal radius rma x 
(rlmax = 0) is very large, we conclude from that equation for negligible 
increase of particle number Ix (according to the standard model) 

i l) -'~ 
rma~ ~ A 2 (10a) 

but obtain in the case of violent particle production up to ~max 

.~ (ixmax~ 1'3 

\lkol) 
(10b) 

In the first case (10a), the radius r is strictly bounded from above and 
the universe collapses to a point again (Rindler, 1977) (big crunch). In the 
second case (10b), being admitted exclusively by the present model, the big 
crunch might well be avoided (see below) because the "creation-ex-nihilo" 
solutions (Ochs and Sorg, 1993) persist also for nonvanishing k0 in the form 
(t < <  1) 
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2"rr 
r(t) = t + -~- A2(lxc + 4k0)t 3 + . - .  ( l l a )  

"rr 1 
X(t) = ~ + ~ t + " "  ( l lb )  

~(0 = ~c3 + "'" ( l l c )  

and consequently the inverse process, "extinction into nihilo," must also be 
possible, in place of the singular crunch. Furthermore, the system has some 
tendency to avoid even such a soft extinction, which may be seen by the 
following argument: whenever the radius becomes extremal (rex), the equa- 
tions (9a), (9b) predict for that extremal situation 

tr 16'rr 4at A2 la,ex 
~ex = - -  + A2kor, x + (12) 

rex --5-- 5 -  

i.e., when the extremal radius is very small (rex < <  1), it must be aminimum 
(Yex > 0), whereas for large extremal value (rex > >  1) one will encounter 
a maximum (Vex < 0). Thus, we expect an oscillatory behavior of the universe, 
either lasting forever or up to the point of "extinction into nihilo." 

For the special situation of both "creation ex nihilo" and "extinction 
into nihilo" there must occur a finite number of cosmic cycles, whose precise 
computation is a problem in itself (not dealt with in the present paper). 
Subsequently, we are mainly interested in the question of the extent to which 
the "particle number" I~ in a comoving 3-cell (of dimension r) can be increased 
through continuous bouncing. 

3. L I M I T E D  PARTICLE NUMBER 

In standard cosmology the number of (noninteracting) particles in any 
comoving 3-cell remains constant; consequently the particle density must 
have been infinite at the moment of creation when the radius r was (very 
close to) zero. Of course, predictions of this kind are not very trustworthy and 
there are numerous attempts to overcome this notorious singularity problem of 
the standard cosmological model. 

The open Dirac-Einstein model, established recently (Sorg, 1992a), 
yields a much more reasonable result in this respect, namely by predicting 
the following law for the production of particles: 

~(t)=~*exp[-3I ~sin• (13) 
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Thus, in view of the asymptotic expansions for the radius r, (11 a), and angle 
• (1 lb), one recovers the nonsingular asymptotic law (1 lc) for the particle 
number IX, with the "Compton number" Ixc emerging as a functional of the 
whole history (0 --< t -< oo). But for the actual numerical integration of the 
system (8a)-(9b), the Compton number Ixc acts as an integration constant 
and now the most interesting question in the present contest is how many 
particles Ix. have been ultimately produced (t --~ oo) if the universe starts 
with Ixc particles within a Compton volume shortly after its birth (t ~- 1). 
In other words, we have to look for the function Ix. = Ix.(Ixc, A). 

However, the (numerical) result for vanishing cosmological constant (ko 
= 0) is somewhat disappointing (see Fig. 1). For all values of the parameter 
A, the final particle number I~. is bounded here by Ix. ~< 2.5Ixc; i.e., the 
final particle number Ix. is in general even less than the initial one (Ixc), at least 
for large enough values of  the parameter A. Thus, the original Dirac-Einstein 
model (with k0 = 0) fails to account for the effective production of particles, 
despite the admittance of the "creation-ex-nihilo" solutions (11). 

However, there is also a second type of solution, namely the bounce 
solutions, where only a single bounce is occurring and the particle number 
is changing during that single bounce. Obviously, this offers the possibility 
of achieving a larger particle number by continuously repeating the single 
bounce with its limited individual increase of particle number. One merely 
has to look for a modification of the original Dirac-Einstein model which 
ensures the continuous repetition of the single bounce. 

I 2 $ 4 5 6 ? a 9 I0  
I I I I I I I J J * I I I J i I i i 

24 t ~ .-24 
~ 3 0  -30  

~ 13 -12  

,~ - 8 .  
~, 4 " ~ - 4  

i i i I i I ! ! i I t | g i i i i [ J 
! 2 3 4 5 6 ? 0 9 10 

L~ t l a l  Par t ic le  Number /~ .  

Fig. 1. Final particle number p~,. Integrating numerically the equations of motion (8a)-(9b) 
for/Co = 0 yields the final particle number p~, as a function of the integration parameter I~c. 
(Upper curve: A = 0; middle: A = 0.25; lower: A = 0.5). The upper case (A = 0) simultaneously 
is the tangent to the lower curves (A > 0) for I.Lc --> 0 and is given roughly by p% ~ 2.5~c 
[in Ochs and Sorg (1993) this linear approximation has been underestimated through p., IA=O 

0.7p.c; cf. equation (55) of that paper]. 
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4. MORE MATTER 

As shown by the qualitative arguments leading to equations (i0), the 
modification of the original equations of motion by adding the cosmological 
term should imply the desired effect of producing many bounces. Indeed, 
this expectation is well verified by the numerical solutions (Fig. 2a). Here, 
the maximal size rex during a single cycle does not support the first supposition 
(10a), applying to the standard cosmological model (where ~ = const), but 
rather supports the second possibility (10b) on account of the violent matter 
production (Fig. 2b): I-~m~x > 102~c, in contrast to the situation with vanishing 
cosmological term ( ~ ,  --< 2.51Xc; cf. Fig. 1). 

Clearly, the origin of matter production during a bounce can be traced 
back to the occurrence of negative pressure ~ ,  (7b), for the spinor field: the 
phase angle • must be in the interval at/2 < X < 3at/2 during a bounce (r 
~- rb), but in a somewhat asymmetric way, such that the matter annihilation 
during the contractive phase (~ < 0) is overcompensated by matter production 
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Fig. 2. Matter production by continuous bouncing. (a) A negative cosmological constant (here 
= -0 .001)  enforces continuous bouncing because the open universe can no longer escape 

to infinity for bounded particle number p~. (b) The particle number p. is increased during any 
bounce, but is held (approximately) constant through the remainder of the cosmic cycle (the 
choice for A was 0.5, I~c = 0.1). 
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in the subsequent expansive phase (r > 0). Thus, we expect the occurrence 
of matter production during a bounce whenever the bounce angle is in the 
first half (mod 2Ir) of the interval (i.e., r < • < ~r) and matter annihilation 
when it is in the second half ('tr < • < 3~/2); see Ochs and Sorg (1993). 

When matter production is so effective, is there also annihilation of 
matter? The original Dirac-Einstein model admitted single-bounce solutions 
of two types: particle number increasing and decreasing. Therefore we have 
to ask: is the second type also present after inclusion of the cosmological 
term? Figure 3 shows that the answer is yes. The maximal radius of the 
seventh cycle is smaller than that of the neighboring cycles (Fig. 3a) and 
simultaneously the particle number during the seventh cycle is also smaller 
(Fig. 3b). However, the maximal radius of the fifth cycle is greater than all 
the preceding ones (Fig. 3a) and a similar statement holds for the particle 
number/~ (Fig. 3b). This indicates the existence of a close correlation between 
the maximal radius per cycle and the corresponding particle number, in 
agreement with equation (10b). 
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Fig. 3. Maximal radius and particle number. The order relation for the maximal values (per 
cycle) of (a) the radius r is the same as that for (b) the particle numbers. This indicates that 
the particle number can increase only in a growing universe (choice of parameters: A = 0.5; 
k0 = -0.001; P.c = 1.0). 
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Through this result, we have to face the problem of the largest achievable 
particle number. If the correlation mentioned just above is strictly valid, the 
particle number could in principle be raised ad infinitum by continued bounc- 
ing with ever-increasing maximal radius per cycle. Besides this type of 
solution, represented by Fig. 2, the numerical integrations demonstrate the 
emergence of a further type (Fig. 4). After the maximal radius per cycle has 
reached its absolute extremal value rm~x in agreement with (10b), it decreases 
again (Fig. 4a) and thus establishes a cosmic supercycle. Similarly, the particle 
number is increased through any bounce up to roughly 10 4 particles per 3- 
cell (Fig. 4b) but is then decreasing again, concomitantly with the maximal 
radius per single cycle. This result again confirms the close correlation 
between increase (decrease) in particle number and growing (shrinking) of 
the universe. In any case, the initial-value equation (9b) says for both types 
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I t l s l l l l l l l l l l  I [ l ~ l S l l [ l l l l l l l l l l  
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C, elmi~ Time t 
Fig. 4. Cosmic supereycle. (a) The growth of the universe via continuous bouncing reverts to 
a shrinking phase when the particle production is no longer sufficient to dominate the negative- 
energy contribution of the vacuum (15). (b) The correlation between growing of the universe 
and increase of particle number implies the occurrence of a maximal number ~ma~ per supercycle, 
presently ~104 particles per 3-cell in agreement with (10b): rm~ ~ 60 (/Co = -0.05;  A = P,c 
= 1). 
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of solutions that the universe can become large only if it simultaneously 
produces sufficient matter. 

It is instructive also to reconsider the interplay of matter and the size 
of the universe from a more physical point of  view: In the vicinity of the 
maximal extension during a given cycle, the particle density p is found from 
(10b) as 

~l'max __ m3 [&max I• 
P ~ ~3max r3m----: - ~" m3lk~ - M c  2 (14) 

and thus is closely related to the cosmological constant ho. As a consequence, 
the energy density At, (7a), of the spinor field ~ is just in the same order of 
magnitude as the vacuum energy At0, (6), namely 

m 
At 3hcp = Me20 IX01 - 1 4 1  (15) 

This result says that, for our model universe, the vacuum is of  the same 
relevance as the matter content! But Fig. 4 with the result (14) even suggests 
a more far-reaching conclusion, namely that our model universe can grow 
only up to that stage where the decreasing energy density of matter becomes 
of the order of magnitude of  the vacuum energy density I h01, and then the 
universe has to shrink again. (Observe that for Fig. 4 the initial density 
p(t ---> 0) = m3p, c = Pc was one particle per Compton 3-volume, ~c = I; 
whereas the density (14) for maximal extension is p ~- malk01 = 0 . 0 5 m  3 = 

0.05pc). Obviously our universe tends to avoid the development of a negative 
total energy density (of matter plus vacuum), i.e., it begins to contract soon 
enough in order to escape the dominance of the vacuum energy over ordinary 
matter! The other possibility for circumventing that vacuum dominance would 
consist in producing more particles; and we want to clarify now why this is 
somewhat difficult to achieve for our model universe. 

5. PERIODIC EVOLUTION 

Moreover, we have to ask also what comes at the end of a cosmic 
supercycle. Is there "extinction into nihi lo"?  This question is difficult to 
answer by means of numerical integrations. What we did observe is a (more 
or less) periodic continuation of those supercycles (Fig. 5). Intuitively, one 
will expect that the "ex t inc t ion- in to -n ih i lo"  solutions form a certain subset 
of the more general supercycle solutions, which predict a kind of (almost?) 
periodic history for the universe. In what follows, we shall be satisfied with 
a qualitative understanding of how the periodicity of the supercycles comes 
about, which represents an alternative to the infinite growth. 
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Fig. 5. Periodicity of supercycles. Continuation of the numerical integrations yields a periodic 
structure for both (a) radius r(t) and (b) particle number I~(t). The extremal values for I~ must 
occur at phase angles • = l'tr (l = 0, 1, 2, 3 . . . .  ). This enables the determination of the phase 
increment A• for a supercycle. 

It is easy to show (Ochs and Sorg, 1993), and was already ment ioned 
above,  that the particle number  j~ is increased during a bounce when the 
bounce angle • (--=X I t b) at the bounce time tb (i.e., ~ltb = 0) is in the range 
"rr/2 < • < "rr (mod 2";r), whereas the particle number  is decreased for  "rr < 
• < 3"rr/2 (mod 2"rr). Thus,  it depends upon the increment  An• = X~ n+ .) - 
X~ n) o f  the phase angle • be tween the two bounces at times ~n+l) and ttb ~) 
whether  the consecut ive  bounce at t ime ~+1) comes  just  right in the first 
half  (second half) o f  the total bounce interval "tr/2 < X < 3";r/2 (mod 2";r) in 
order  that the particle number  is increased (decreased). Now, for r > >  1, 
the equation o f  mot ion (8a) for  • yields the approximate increment 

An• ~ 2(~ n+') - ~n)) (16) 

provided the radius is large enough for  most  o f  the t ime o f  the cycle. Therefore ,  
for  large enough separation of  the bounces,  i.e., 

Antb = ~n+l) _ ~n) > >  "n" (17) 
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one can always manage, by suitable choice of the initial conditions, to bring 
X(b ") for many (all?) bounces into the first half of the bounce interval, eventually 
even at exactly the same place of this semi-interval ( ~  A •  = 0 mod 2~) 
in order to raise the particle number for any one of the consecutive bounces. 
This situation applies for Figs. 2 and 3, where A, tb ~ 60. 

However, if the increment A,X is of  the order of the range of the bounce 
interval ~r, i.e., when we have A,tb <--- "tr in place of the condition (17), then 
it becomes difficult (or even impossible) to have the ideal value A,• = 0 
(mod 2w) for particle production. This situation is encountered in the case 
of Fig. 5, where A,tb ~ 4. As a consequence, the increment A,X becomes 

2-ff 
A,, X = - -  (18) 

N 

or more generally 

2'/1" 
A,• = ~ (mod 2"tr) (19) 

so that one must await an integer number N of bounces in order to have the 
optimal phase shift A• = NA,• = 0 (mod 2"rr). However, this optimal phase 
shift cannot be fully exploited for matter production, because only the first 
half NI2 of bounces fall into the "matter-producing interval" at/2 < • < 'rr, 
whereas the second half N/2 fall into the "matter-annihilating interval" "rr < 
• < 3"tr/2. Thus, the matter produced in the first half of the supercycle is 
eaten up again during the second half and the total supercycle will consist 
of N ordinary cycles. Because of the equation of motion for the particle 
number ~, (8b), the total phase shift A• for a supercycle can easily be read 
off from the laJt diagram; for instance, for Fig. 5b we have AX = 177r - ~r 

50 100 150 2 0 0  

i * J ~ i i , I , , i , 

120- - 1 2 0  

"~ ioo- -too 

I 0 -  - I I0  
U + 

6o- -6o 

e 40" - 4 0  
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0 I - 0  
50 100 1S0 200 

Ce~mt�9 T ime  t 

Fig. 6. Linearity between X and t. The supercycle solutions (Fig. 5) obey an almost linear law 
between phase angle X and cosmic time t, which indicates the existence of  strictly periodic 
solutions. 
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= 16"rr. On the other hand, the rlt diagram (Fig. 5a) says that we have eight 
ordinary cycles during that phase increment, AX = 16"rr. Consequently, the 
phase shift per individual cycle is AnX ~- 16"rr/8 = 0 (mod 2-rr). This yields 
for the lifetime At = A• (16), of an individual cycle Ant ~ 16"rr/16 = "rr, 
in rough agreement with the r/t diagram of Fig. 5a. 

Moreover, the hypothesized linear relationship between cosmic time t 
and phase angle X may also be checked by a direct numerical integration 
(Fig. 6). The fact that the observed linearity is almost perfect suggests that 
strictly periodic solutions will indeed exist (a rigorous proof of this conjecture 
is not yet known to us). 

6. DISCUSSION 

Surely, the present Dirac-Einstein model of the universe is not in 
agreement with what we observe today around us, because the matter content 
of the universe is presently not in some globally coherent quantum state t~. 
However, the present model could perhaps represent a good simulation of 
the primeval universe with violent fluctuations of radius ~ and energy content 
At (we have fixed the topology, which therefore cannot participate in those 
fluctuations). If one adopts the occurrence of a phase transition (Dolgov et 
al., 1990), which brings the cosmological constant down to zero at a time 
when the universe has become large enough and equipped with enough matter, 
then it will further follow the standard cosmological model. Unfortunately, 
there is presently no general agreement among cosmologists (Hawking, 1990; 
Penrose, 1990) about the precise nature of such a phase transition from the 
quantum era to the standard phase, nor is there a general agreement about 
the present value of the cosmological constant (Weinberg, 1989). In any case, 
the standard model needs some modifications for the primeval era and the 
present Dirac-Einstein theory may be considered as a possible candidate, 
which additionally is a reasonable alternative to the idea of inflation. 
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